Reconstruction in the Labeled Stochastic Block Model

نویسندگان

  • Marc Lelarge
  • Jiaming Xu
چکیده

The labeled stochastic block model is a random graph model representing networks with community structure and interactions of multiple types. In its simplest form, it consists of two communities of approximately equal size, and the edges are drawn and labeled at random with probability depending on whether their two endpoints belong to the same community or not. It has been conjectured in [1] that this model exhibits a phase transition: reconstruction (i.e. identification of a partition positively correlated with the “true partition” into the underlying communities) would be feasible if and only if a model parameter exceeds a threshold. We prove one half of this conjecture, i.e., reconstruction is impossible when below the threshold. In the converse direction, we introduce a suitably weighted graph. We show that when above the threshold by a specific constant, reconstruction is achieved by (1) minimum bisection, and (2) a spectral method combined with removal of nodes of high degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic reconstruction of carbon fiber paper gas diffusion layers of PEFCs: A comparative study

A 3D microstructure of the non-woven gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs) is reconstructed using a stochastic method. For a commercial GDL, due to the planar orientation of the fibers in the GDL, 2D SEM image of the GDL surface is used to estimate the orientation of the carbon fibers in the domain. Two more microstructures with different fiber orientations are g...

متن کامل

A Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning

The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...

متن کامل

The Effects of Monetary Policy on Output and Inflation in Afghanistan: A Dynamic Stochastic General Equilibrium Approach

T he consequences of the decisions and policies taken for the reconstruction of Afghanistan during the past decade, showed that there should be paid more attention to the monetary policies. There is also a question that whether monetary policies have the potential to affect the production and inflation in Afghanistan or not. The aim of this paper is to explore this effect by designin...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013